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SUMMARY 

The authors obtain solutions for the title problem when the cylinder is imparted a constant velocity or a con- 
stant acceleration. It is assumed that initially both the solid obstacle and the infinite expanse of liquid sur- 
rounding it axe at rest. The velocity and acceleration imparted to the cylinder are of finite magnitude, recti- 
linear and in a direction perpendicular to the cylinder axis. Both solutions are expressed by means of three 
distinct matched expansions. These analyses are valid as long as the Reynolds number, Re,  is small. 

Early in the processes under discussion and throughout the exterior of the cylinder, both flows are un- 
steady Stokesian to within a small error. Later they axe represented by inner and outer expansions. The solu- 
tion structure and the nature of the expansions suggest that close to the cylinder the effects of viscosity and 
transiency dominate the flow field. It is only in the outer fields, and some time after motion has commenced 
that the effect of vorticity-convection plays a significant role. For the case in which a steady rectilinear 
velocity is imparted to the cylinder, both the inner and outer expansions derived here approach those which 
were obtained previously by Proudman and Pearson for a steady flow pattern. From the leading terms in the 
two expansions representing the flows close to the cylinder, approximate expressions for the time-dependent 
drag are obtained. 

1. Introduction 

The authors present solutions for the unsteady fluid motion in the infinite expanse outside a 

solid circular cylinder. Initially, both the liquid and the solid are at rest. Suddenly a finite recti- 

linear velocity V, or a constant acceleration c~ is imparted to the cylinder in the direction perpen- 

dicular to its axis. The Reynolds number Re, which is based on that velocity or acceleration, 

the radius of  the cylinder a and the kinematic viscosity v is assumed to be small. Using this fea- 

ture, the authors develop solutions of  the matched asymptotic expansions type which represent 

the space and time dependence of  the flows throughout the exterior of  the cylinder. In principle, 

these hold for all times and the solution for case (a), where a constant velocity is imparted to the 

cylinder, shows that steady state is eventually attained. However, the applicability of  the solu- 

tion for case (b), where the obstacle is continuously accelerated, is limited because the small Re 

perturbations type of  solution does not  admit large obstacle velocity. The latter treatment is 

nevertheless of  interest. 

This work is the second in a sequence. The case of  a sphere departing instantaneously from 

rest and acquiring a constant velocity has already been solved by the authors [1]. In terms of  
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approach and technique the treatments of both geometries are very much alike and hence many 
of the arguments and algebraic details brought into [ 1 ] will not be repeated here. However, the 
solutions presented herewith differ from the three-dimensional one in their basic structure. This 
distinction is described, and to some extent explained, by considering the vorticity-balance rela- 
tion. 

In the cases treated in both works, vorticity is continuously generated at the obstacle's sur- 
face. Shortly after the processes have commenced the total amount that has been produced is 

small, and it has not yet diffused away into the far field, where the velocities of the liquid with 
respect to the sources of disturbance are high. Consequently, in both the two- and three-dimen- 
sional flows, initially the effect of  convection is everywhere negligible. It follows, therefore, that 

for small time these flows can be mathematically expressed throughout by the solutions of the 
time-dependent Stokes equation. 

As the processes go on, a significant amount of  vorticity diffuses away from the obstacles. 
There, in the far field, the velocities with respect to the obstacles are relatively large. Thus, for 
large time and away from the obstacles, the unsteady Oseen equation, which was derived in [ 1 ], 
governs also the disturbance flows in the two-dimensional cases under discussion. That relation- 
ship expresses the balance between the temporal changes in the vorticity and the transport of  
this quantity by diffusion and convection, where the latter effect is represented by a linear 
term. In the treatment presented in [ 1 ] and in the analysis of case (a), the solutions of that equa- 
tion asymptotically approach the steady outer solutions previously obtained by Proudman and 
Pearson [2] for a sphere and a cylinder, respectively. 

But this is also where the similarity between these two works ceases. One of the important 
results derived in [1] is that, to the highest order, the flow close to the sphere is always inde- 
pendent of  the effect of  convection. This does not hold if higher-order terms are included [3], 
but if one restricts oneself to the unsteady approximation, then the unsteady Stokesian 
solution, which initially holds (approximately) throughout the exterior of the sphere, holds 
also close to it not only initially but forever. However, the flows close to the translating 
cylinder are (approximately) independent of the effect of  convection only when motion 
commences. Late in the processes, the unsteady Stokesian solutions hold no longer and the 
stream functions are given by Proudman and Pearson's [2] inner-expansion form: 

'x, A [(rlnr - r/2 + (2r) -1 ) sin 0] + O(/X2), 

~ ARe(3t /2)  [(rlnr - r/2 + (2r) -1 ) sin 0] + O(A 2) 

for cases (a) and (b), respectively. Here (r, 0) are the normalized polar coordinates and t desig- 
nates time. These expressions reflect the indirect effect of convection, although this may not be 
immediately apparent. Indeed, the expressions between the square brackets satisfy the bihar- 
monic equation. This implies that at every point in the inner field, the effect of vorticity-convec- 
tion is negligible compared with that of  diffusion. However, the amplitude of the inner field is 
determined by matching with the outer region, where convection has been shown to be signifi- 
cant. This influence is reflected by Proudman and Pearson's gauge function 4,  which depends 
on Re. In other words, the effect of vorticity-convection, which is prevalent for large times and 
away from the obstacles, does not significantly affect the neighbourhood of the sphere con- 
sidered in [1] but does affect the flow pattern in the vicinity of the cylinder. 



As presented, the description of the three different physical behaviours in the various sub- 
domains should be taken as mere conjectures. However, the coordinate scaling, which is carried 
out in the next two sections, is based on these conjectures. This particular scaling affects, in 
turn, the forms of the governing equation and hence also the different expansions representing 
the two solutions under discussion. Consequently, the fact that the expansions match provide 
reassurance that the picture described and the conjectures made are plausible and that the three- 
expansion solutions are indeed valid. 

2. Case (a), constant velocity 

Denoting dimensional variables by primes, the normalized stream function, and time and space 
coordinates are defined as follows 

t~'/Va--~b, t'g/a2--t, (x ' ,y ') /a-(x,y).  (1) 

Thus, the governing equation reads 

a a (~, ~ ~) _ v ,  ~ (2) a--t (xTe ~) - Re  a (x, y )  

in which V 2 is the Laplacian. The origin of the cartesian (x, y)  coordinate system is fixed to the 
centre of the cylinder. Therefore, the boundary and initial conditions are given by 

f f = a ~ / a r = 0 ,  t_>0, r = l ,  0 < 0 < 2 n ;  (3),(4) 

~,x, r sin 0, t > 0 ,  r - ,  o~, 0 < 0 < 2 n ;  (5) 

~=0, t=O, 1 < r < o o ,  0 < 0 < 2 n .  (6) 

The polar and cartesian coordinate systems used here are interrelated in the usual manner and 
the centres of  both systems coincide. It follows that the cylinder moves in the negative x-direc- 
tion with respect to the fluid at infinity, which is at rest. 

As explained in the Introduction, the flow under discussion exhibits three distinct physical 
behaviours: early in the process throughout the field, late but away from the obstacle, and late 
in the vicinity of the cylinder. The solution for ~b representing the flow is accordingly expressed 
by three different expansions. These are designated by ~(e,t), ~(l,o) and ~(l,i). The first of 

each superscript-pair indicates whether the expansion holds 'early' or 'late'. The second suggests 
'inner', 'outer' or 'throughout'. Note that it is assumed that the regions of validity of every two 
expansions overlap, so that the matching principle can be invoked. 

The space and time variables associated with each sub-domain reflect the prevalent physical 
behaviour. As explained, early in the process the effect of convection is nowhere significant. 
Vorticity is transported mainly by diffusion and hence V does not; yet ~ and a do play a role in 
the scaling of the variables characterizing the (e, t) sub-domain. Consequently, (r, t), as defined, 
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serve as the space and time coordinates and relationship (2) is the governing equation there. 
Another rather obvious feature of the scaling scheme is that it should make the expression 

for the flow far from the cylinder independent of the radius a. Note that although in principle 
~(e,t)  depends on r and t and, although a plays a role in the scaling of these, far from the ob- 
stacle the suitably dimensionalized solution is indeed independent of a. The leading term in 
this expansion, which is derived below, consists of two components. The componenty, which 
represents a uniform stream, becomes independent of a when multiplied by the normalizing fac- 
tor Va. The other component evidently decays as r increases. However, the term in the expan- 
sion ~b (t,°), which represents the disturbance flow and the wake behind the cylinder, leaves a 
trace at infinity. It follows that in the scaling of the independent variables of the (l, o) sub- 
domain, a can play no role. By elimination, only v and V do, and hence the space and time coor- 
dinates should be scaled as follows: 

R = r R e ,  T = t ( R e )  2. (7) 

Thus, the length scale is (V/v) and this is known as the viscous length. The time scale (v /V 2) was 
encountered in [ 1 ]. Finally, close to the obstacle and late in the process, the characteristic length 
is again a. However, the time variations are introduced via matching with the solution prevalent 
in the late-outer sub-domain. Hence, the coordinates characterizing variations in the (l, i) sub- 
domain are (r, T). 

The expansion which holds early in the process and throughout may be written as 

= I~ ( e ' t )  ~ 1 / /o(e ' t )  + (Re) I~1 ( e ' t ) .  (8) 

It follows from equation (2) that the leading term ~k0 (e, t) must satisfy the following relationship 

(° ) " ~ -  -- V 2 V 2 t~o(e't) = 0.  (9 )  

Using both the initial and the boundary conditions (3)-(6),  one finds that the Laplace transform 
of fro (e' t) (r, 0, t), defined thus: 

x12. ° (e,  t)  (r ,  0 ,  S) --  fO °* exp (--st) t~ o (e, t) (r, 0, t) dt, (10) 

is given by 

XItO (e, t) (r ,  0 ,  8) = [ / - t ' (  2 1 K , ( x / s - r ) -  1 Kt(~q-)  + s  r -  s i n 0 , ( l l )  
s 312 Ko (X/s-) r 

where Ko and K1 are the modified Bessel functions of the second kind. 
In order to find the expansion form ~(l, i)  o n e  has to adopt the standard technique of re- 

casting the inverse of the solution (1 1) in terms of the coordinates associated with the (l, i) 
sub-domain, namely (r, T). It was shown in [ 1 ] that in view of the relationship T = (Re) 2 t, the 
T-transform of the expansion sought can also be obtained by letting Re vanish in the following 
relationships 



qAt, i) (r, S) - f :  exp ( - S T )  gZ (l'i) (r, T) d T =  Re 2 ~o (e't) (r, SRe2),  

SRe 2 = s. 

(12) 

(13) 

Therefore, K0 (X/~-) is expressed as follows 

Ko (Vrs) = Ko (vCS R e )  ~ --  (3' + In V ~  -- (In R e - '  + k)  + k --  ln2))  + O ( R e ) ,  (14) 

where 3' is the Euler constant, and after rather lengthy manipulations, one gets the following 

result 

A 
kt, (t,i) --- - -  (r lnr -- i"/2 + 1/20 sin 0 + O(A2). (15) 

Re2S  

Here A is the gauge function obtained by Proudman and Pearson [2] which is defined thus 

A = (In ( l /Re )  +k)  -1 . (16) 

At this stage of the analysis, k need not be determined, Kaplun and Lagerstrom [4] suggested 
that if one is to consider higher-order approximations, then there are advantages to the choice 

k = ln4 + 1/2 - 7. 
Evidently, the result (15) expresses not only the form of the expansion, but also the solution 

for the leading term of the T-transform xlt(l'i). Indeed, by rewriting the governing equation in 

terms of (r, T) one gets 

Re 2 a ( V 2 ~ )  +Re  O(ff 'V2ff )  - V 4 ~ .  (2') 
aT (x,y) 

This implies that the leading term in the expansion ~(l,i) should be in the form of a product of 
a function of T times a solution of the biharmonic equation which satisfies the conditions (3) 
and (4). The result (15) meets these requirements. Moreover, since (SRe 2)-1 or s -x is the trans- 
form of unity, it follows that for T --> oo the inverse solution reduces to Proudman and Pear- 
son's [2] expression for the steady near field. Its matching with the expression ~(l,o) for all 

other values of T will be also verified below. 
Recasting now the governing equation in terms of the variables associated with the (l, o) 

sub-domain, one gets 

i3 ( ~ 2  ¢s) - Re  a (~, ~ 2  ~k) _ ~ 4  ~, (2") 
aT a(X,Y) 

where (X, Y) = R(cos 0, sin 0) are the late-outer-field cartesian coordinates and ~2  is the Lap- 
lacian in terms of these. It is assumed that the solution in that sub-domain has the form 

~b (I,°) ~ Y/Re + (A/Re)  ~ (t,o) (R, O, T), (17) 
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so that the term representing the disturbance in the uniform flow is governed by the unsteady 
Oseen equation which is very similar to that derived in [1]: 

+ ~ _ _ ~ 2  ~72~, =0 .  (18) 

Clearly ~1 (l,o) is the solution of an initial-value problem. It must therefore satisfy conditions at 

each end for all values of T as well as an initial condition for all values o fR .  Since the solution 
for ~(e, t) for large r is evidently irrotational, ~ 2  ~(/,o) is taken to be zero initially and there- 

fore by Laplace transforming equation (18) T-wise, one gets 

(S+ ~/aX- ~72) ~ 2  xI/1 (/'O) = 0. (19) 

The integration of equation (19) is achieved as follows. Recasting in terms o fR  = rRe the T-wise 
Laplace transform of the vorticity associated with the solution (15) one gets 

2 
V2 q*o (1,i) = (Re)2 ~2 To (1, i) ~ (Re) A ~-~ sin 0. (20) 

Since V 2 ¢J 1 (l, o) must match this expression, a solution of equation (19) is sought which is pro- 
portional to sin 0. The most general expression which satisfies this requirement and is finite at 
infinity, is 

~2~1(1 ' ° )  =P(S)  exp (X/2)K1 (~'R/2) sin 0, (21) 

where 

~" = (4S+ 1) 1/2 . (22) 

The integration constant P(S) is evaluated by invoking the requirement that the two expressions 
for the vorticity should match. This yields 

P(S) = ~/S. (23) 

Note that this matching holds for every value of S and hence for the entire time span 0 < T <  o,,. 
The solution for the transform of the stream function representing the disturbance flow in 

the (l, o) sub-domain is evidently given by 

2 a 
xI ' I ( I ' ° ) (X 'Y 'S)=-  S 8Y £ exp(-S~){exp(X/2)Ko(~R/2)+lnR}d~,  (24) 

"..= ~2 y2 . 
where X = X - ~, R = + This result is derived in Appendix A. Note that the solution 
(24) in effect consists of  two line integrals. One represents the summation of irrotational doublets 
distributed along the positive X-axis. The other represents a similar distribution but of  the solu- 
tion of the equation 



(s + alaX- ~2) G(X, Y,S)= 0 

which vanishes at infinity and has the following singular behaviour at the origin: 

y2)-1 
G ~ -  Y ( X  2 + as ( X , Y ) ~ 0 .  

7 

(25) 

(26) 

The singularities due to the two distributions on the X-axis cancel out and the solution (24) is 
therefore continuous across this axis. 

3. Case (b), constant acceleration 

As explained, the solution of this case is also assumed to posses distinct behaviours in the three 
sub-domains (e, t) (l, o) and (l, i). It is, again, anticipated that early in the process throughout 
the exterior of the cylinder, a and a2/v  are the characteristic length and time scales. However, 
the characteristic velocity in this case is (aa)U2 rather than V and the stream function must, 
therefore be normalized with respect to (o~a3) 1/2. It is thus found that the boundary conditions 
(3) and (4), the initial condition (6) and the governing equation (2) hold here too except that 
the Reynolds number is defined thus: 

R e  = (aaa) l l2 /v .  (27) 

The condition imposed on the flow at infinity reads 

~ ( R e ) t r s i n O ,  t > 0 ,  r~oo ,  0 < 0 < 2 f t .  (5') 

Therefore, the leading term in the expansion which holds early throughout 

= ~(e , t )  ~ (Re)  ~bl (e ' t)  + (Re) 2 ~b2 (e't) (28) 

is o f  O(Re) .  Its Laplace transform can be easily shown to be given by 

= s- S r - + x/i-K0 (x/s--) " r K1 (r x/~--) sin 0, (29) 

which is obviously (l/s) times the right hand side of equation (11). 
As explained in the last section late in the process and far from the cylinder the length and 

time scales must be independent ofa.  But, since in the case under discussion the obstacle is im- 
parted acceleration a rather than velocity V, the new viscous length scale is (v2/t~) 1/a and the 
corresponding time scale is (v/t~2) Ua . It follows that the independent variables typifying the late- 
outer domain (R, T) must be given by 

R = r ' ( a / v2 )  U3 = rRe 213 , T =  t ' ( a 2 / v )  U3 = tRe  4/3 (30) 



while, as before, the independent variables of the late-inner domain are (r, T). 
Rather than derive the appropriate late-inner expansion, it will be verified that it is given by 

t~ = t~ (l,i) ~ 3 ~ T ( r l n r  - r /2 + 1/2r) sin 0. (31) 
2 Re1~3 

Recasting equation (2) in terms of (1", T), as defined by relationship (30), one finds that the term 
which represents the local temporal changes, becomes of O ( R e  413) while vorticity convection 
is of O ( R e ) .  It thus follows that the leading component in the late-inner expansion has to be in 
a form of a product of a biharmonic function with an arbitrary function of time. Such a form is 
indeed exhibited by the right hand side of equation (31). Moreover, the particular function of 
time is such that by setting r = R R e -  2/3 and letting R e  approach zero, one finds that the late- 
outer expansion is given by 

TR A 
~( t ,o )  ~ R---~ sin0 + Re  1~1(/'O) (R, T). (32) 

The first term indeed represents the accelerating uniform stream and that is the flow field far 
from the obstacle. Again, by repeating the manipulations involved in the derivation of the re- 
sult (15), one can show that the s and S Laplace transforms of the leading term in t~ (e ' t )  and 

ff(t,i) match. Note that in the present analysis s is replaced by S R e  4/3 and equation (12) is 
accordingly modified. 

It is of physical interest to evaluate the leading terms in the expansions t~ ( e ' r )  and ~ll ( l ' i )  - 

as the authors do - because, when combined, they yield an expression for the drag. However, 
it is as important to verify the conjectures made about the three-expansion structure of the solu- 
tion and the corresponding behaviour of the flows under discussion. So far, it has been shown 
that the expansions thus constructed match when only the leading irrotational component of 
~b(t,o) was accounted for, and this is clearly inadequate. Therefore an expression for the rota- 
tional term ~kl (t ,o),  which represents the disturbance created by the cylinder, will now be ob- 
tained. It will be shown that, when included in t~ ( t ' ° ) ,  this expansion matches the others. How- 
ever, within the framework of this paper 41 (t, o) (R, 0, T) will not be evaluated and plotted. 

Recasting the governing equation in terms of the late-outer variables (R, T) one finds that 
equation (2") holds in this case too. Then, by substituting expansion (32) into equation (2"), 
one finds that the disturbance stream function is governed by the following unsteady Oseen 
equation: 

+ Z ~'~ ~ 2  ~/1(/'°) -- ~4~//1(/'°) (33) 

This can be explained on physical grounds which are also applicable in [1] and in the treatment 
of case (a). But here that relationship is of a somewhat different form. The term representing 
vorticity-convection reflects the linear growth of the velocity of the stream at infinity with time. 
This complicates matters considerably. In particular it is impossible to solve equation (33) by 
manipulating the result (24) although, noting that the results (11) and (29) as well as (15) and 
(31) are algebraically similar, one would be tempted to try to look for a shortcut. 
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As in case (a), ~2  $ ( t ,  o) is taken to be initially zero. Hence, by Laplace transforming equation 
(33) one gets 

S OSOX ~72 V2XItl(/'°) = O. (34) 

It can be verified that this admits solutions of the form 

{Ai t +(3+2m2~ tAi } 
Bi ~-~ ! Bi 21-'~+13) sin(mY)" (35) 

Here Ai and Bi are Airy integrals, as defined in Jeffreys and Jeffreys' [5] well-known text. In so 
far as the governing equation is concerned, all four possible products are admissible when 13 and 
m can attain any value. But in view of the other requirements imposed on the vorticity, the solu- 
tion has to be of the form: 

V2xPl(t '°)= f:oo f :  F(~)(27r)2113m 

Bi( X+ 2m2+~}Ai(Rm2+~IAi(X-2S+~ i 
~---~ U-~-- -1 ~ 2 - - ~ / 3  / ~, 2~- /3  / ] (36) 

sin (m Y) dm d/3 

Bi( "2m2 +"--~1 Ai( X + 2._____m 2 +~I Ai( X- 2___ffS+/3.1 / 
\ 21/3 l \ 21/3 I \ 21/3 l] 

for x < 0. F(/3) is determined below. 
It is first noted the two expressions are equal for X = 0. Hence, the Laplace transform of the 

vorticity is continuous along the Y-axis. The X derivatives obtained from these two expressions 
are also equal there except at the origin. To show that this is so one writes the difference be- 
tween the two thus, 

,,~ [~-2S~I A (2m2+/3~ (2m2+/3 ) 
21/3(270 f'-~o Jo F ( f l ) m A i ~ ]  i' 21/3 ] Bi 21/3 

('2m2 +/3~ (2rn2+~t~ 
- Bi' \ --~l; I Ai \ 2 '/3 /._] sin (mY) dmd/3. 

Evidently the expression in the square bracket is the Wronskian, and it is equal to 7r -t . There- 
fore, in the resulting expression for the difference, a term in the form of a Fourier sine integral 
can be factored out. The latter and hence also the entire expression vanishes everywhere except 
at Y = 0. Both here and elsewhere in this work Fourier integrals are evaluated using Light- 
hill's [6] generalized-functions approach. Note also that since the Laplace transform of the vor. 
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ticity satisfies a second-order equation, the continuity of its zeroth and first derivatives every- 
where except at the origin, implies that all higher derivatives are similarly continuous. 

Since the outer solution for the vorticity (26) is in the form of a Fourier integral, to obtain 
its inner limit it is not enough to recast it in terms of the inner variables (x, y). As shown by 
Bentwich [7], one must also replace the integration parameter thus: 

M = m Re-21a. (37) 

Broadly speaking, this means that the behaviour of the integral close to the origin in the physical 
plane is affected by the contribution due to integration over the outskirts in the Fourier-trans- 
form domain. That contribution can be approximated by replacing the Airy integrals by their 
asymptotic values for large positive arguments. Thus the inner limit of the outer solution is 

,,.o, Y5. fo" t Re213 \ 2 U3 / 

" expt+ 4- 3 Re ~M3 E (1+ /3Re4'3+xRe2~3/2-(l+----~-M--~ , /3Re4/3 \3/2--]| 
2M 2 ) _~dMd/3, 

(38) 

where the plus and minus signs correspond to the first and second expressions, respectively, of 
equation (36). But with both signs, for vanishingly small Re, one gets 

~72xI,,(t'°)~Re-2/3 fSoo F ( f l ) A i ( ~ ) d r 3  fo ~ exp(-Mx)sin(My)dM. (39) 

The integral with respect to M is clearly y (x 2 +y ~) - l ,  and it is shown in Appendix C that if 
F(fl) is suitably chosen, the integral with respect to 13 is 3S -2 . Thus, the inner and outer expres- 
sion for the Laplace transform of the vorticity can be made to match. 

The Laplace transform of the disturbance stream function in the outer field late in the pro- 
cess is 

~l(t '°)=-(n)21/3 fS~ fo ~ F ~ ) {  f_x.~ A ( ~ , S , m , / 3 ) e x p [ m ( ~ - X ) l d ~ +  

+ fx  ~ A(~, S, m,/3) exp [m (X -  G)] d~} sin (m Y)dm d/3. (40) 

Here A(X, S, m,/3) is the top or bottom triple product on the right-hand side of equation (36) 
for negative or positive X, respectively. In fact the solution for 'I~ 1 (~,o) is obtained by inte- 
grating the latter relationship, and imposing the condition that the disturbance stream function 
should vanish at infinity. Since equation (36) is of the Poisson type, it follows that its solution 
,Iq (t, o) is unique. Therefore, if the vorticity of the inner field matches that associated with the 
outer, the corresponding stream functions match too. This can also be verified by recasting 
',Iq (t,o) in terms of  x, y,  M and 7/, where the latter integration variable is defined thus: 
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= rlRe213. (41) 

Again approximating the Airy integrals by their asymptotic values and utilizing the results 

proved in Appendix C one gets fo rx  > 0: 

~x (t,°),--Re 4/3 f?** fo (1/2)FO)Ai -~- sin (My). 

• t e x p ( - M x )  I f°** e x p ( 2 M ~ ) d ~ +  fox d ~ l  + (42) 

+ exp (Mx) ~ exp (-2M~) d~ } d~ = 

3 Re 4/3 
S 2 2 

+ exp (-Mx) sin (My) dM = 

= Re4~ a 3 ~ (lnr)y. 
2 S: 

The same result is of course obtained for X < 0. Therefore by incorporating the last result with 
expansion (32) one can show that it matches expansion (31). 

4. The drag and other results 

As pointed out in the Introduction, the three-expansion structure of the solutions obtained re- 
fleets the relative effectiveness of vorticity-diffusion, vorticity-convection and temporal changes 
of that quantity in various parts of the space-time domain. Clearly, two different flow fields, 
namely those analyzed here, can be represented by one and the same form of solution, because 
they are physically similar in that sense. These are probably not the only two. It appears reason- 
able to expect that the solution structure proposed is applicable to other flows in which a cylin- 
der immersed in liquid departs from rest. The manner of departure should be such that the rela- 
tive effectiveness of convection, diffusion and temporal changes are as conjectured in the Intro- 
duction and verified by the fact that the expansions match. A necessary condition for such 
physical situation to occur is that the velocity of the cylinder is always finite and Reynolds num- 
ber based on the maximum velocity is small. 

While each of the three expansions obtained in the two analyses holds in a different sub- 
domain, together each threesome covers the entire space and time domain under discussion. 
The same holds for the matched-asymptotic-expansions solution for a translating sphere which 
was presented in [1]. Hence, both works provide comprehensive physical pictures. However, if 
one is interested in the time-dependent drag, the construction of the complete solutions is of 
more crucial importance in the treatments of the two-dimensional cases at hand. Indeed, Vil- 
lat [8] successfully calculated it for a sphere by ignoring the outer field and assuming that close 
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to the translating obstacle the flow is unsteady Stokesian. Decades later, his assumption and the 
result based thereon were verified by the author's complete solution. However, it is impossible 
to apply Villat's short-cut to the cases at hand. The near field, from which the stresses on the 
cylinder are deduced, is expressed by two different expansions, ~b (e,t) and tP (t'i). Moreover, 
the latter matches qj(t,o) and thus affects it. Consequently, in order to calculate the drag, one 
must solve for all three expansions which cover the entire space and time domain. 

The leading terms in the two expansions I,~ (e't), which were obtained in the solutions for 
cases (a) and (b), satisfy the same linear homogeneous equation. The same holds for the leading 
terms in ff(l,i). It is for that reason that corresponding terms in the (e, t) and (l, i) expansions 
are simply related. Thus the Laplace transforms of ffl (e, t) and ~bl (l,i) for case (b) are 1/s and 

1IS times the corresponding transforms for case (a). Moreover, since the drag force depends on 
the flow field close to the obstacle, this similarity is reflected by the following rather simple 
and useful relationship 

da(t)... £ t  dv( f )  df, (43) 

which follows from the properties of  Laplace transforms. Here d a and d v are the drag forces ex- 
perienced by the cylinder when it is instantaneously imparted a constant acceleration and a con- 
stant velocity, respectively. For different modes of departure from rest, expressions for the time- 
dependent drag can be obtained using the Laplace-transform properties as shown in [1]. Note 
that these results for various modes of departure are easily obtained only under drastic trunca- 
tion. In principle, the solution for the flows differ. This difference is reflected, among other 
things, in the dissimilarity of the expressions for the late-outer disturbance flows for cases (a) 
and (b). 

The process of integrating the stresses on the cylinder's surface is very similar to that carried 
out in the case of the sphere considered in [ 1]. Therefore, in order to save space, it will be stated 
here without proof that the Laplace transform of the drag forces on cylinders of unit axial 
length are 

7r ( 4 K1 (X/s-) ) 1 
+1 ; D a ( s ) = -  D v(s). (44) Dv(s)=pV2a'-~e s ~12 Ko(X/~-) s 

These are based on the one-term approximate solutions for l,O (e't), which hold for small time. 
These account for the added-mass effect which is prominent initially when the cylinder instan- 
taneously departs from rest. The inverse of the s-independent contribution in the first relation- 
ship and the s-1 term in the second are, respectively, the delta function 6 (t) and the Heaviside 
step function H(t). There is a similar s-independent contribution to the right-hand side of equa- 
tion (29) of [1 ], which expresses the added-mass contribution to the drag on a sphere. 

The other important effects reflected in these solutions for ~b (e't) and in the expressions for 
the drag (44) derived therefrom, are the diffusion and temporal changes of vorticity. But since 
the processes of vorticity and heat diffusion are governed by the same equation, it is possible to 
make use here of the solution for the transient temperature distribution throughout the exterior 
of  the cylinder which is given in Carslaw and Jaeger's [9] text. Indeed, the Laplace transforms 
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appearing there are identical, or easily reducible, to the terms involving K0 and Kx in equations 
(11) and (44). It can thus be shown that for case (a) the drag, as derived from the solution (11), 

is given by 

d r _  oV2arr f 6 ( t )  16 d~ t R ~  + fo e -~2 t  " (45) 
~[J~ (~) + r~  (~)1 " 

For small values of t it is useful to use the approximation given in the text cited, namely 

d r _  P V2arr Re  {6(t) + (nt) -1/2 + 1/2} + 0( t l /2 ) ,  t << 1, (46) 

and obviously d a can be obtained by straightforward integration. 
It was shown that by setting SRe 2 = s and SRe 4/3 = s in relationship (11) and (29) and letting 

Re approach zero, one does not only get the expansion forms of ffq,i), but also the correct ex- 

pression for the highest-order term. It follows that Proudman and Pearson's [2] well-known ex- 
pression for the steady-state drag is embedded in the form (45). Indeed, one gets it by setting 
t = T/Re 2 , letting Re become small and retaining the highest-order term. This operation is carried 
out usingCarslaw and Jaeger's [9] approximate relationship for the inverse of  the Laplace trans- 
form which involves Bessel functions, 

L -i  [(s-V2K, (x/~-)/Ko (vc~-)] 
2 2 

ln4 + lnt - 23' (ln4 + lnt - 23,) 2 
(47) 

It clearly holds for the large argument, i.e. for a fixed value of T and smallRe. Consequently, 

late in the process, d v is indeed given by 

A 
d v ~ (oV2a)  (47r) Re  + O(A2/Re)" (48) 

It is noted at this point that when the problem of steady flow past a cylinder was tackled, con- 
siderable ingenuity was required to discover the gauge function A with its logarithmic depen- 
dence on Re.  For the case of a steady stream past a sphere the regular expansion form holds. 
Hence that solution provides no clues. However, by considering physically more complicated 
two-dimensional flow problems, one can actually deduce the functional relationship A(Re). This 

has been shown here, where unsteadiness was introduced. It was also shown by Bentwich [10] 
who considered the complications when the flow past the cylinder is bounded on one side. 

The drag coefficient is defined in the conventional manner: 

C D - dv/O V2a. (49) 

It is plotted in Figure 1 as a function of time for various values of  Re .  These graphs embody 
both the results (45) and (48). Logarithmic scales are used in both the abscissa and ordinate so 
as to cover as wide a range as possible. But since with such scaling the origin cannot be included, 
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this figure does not reflect the added-mass effect. The curves do exhibit the t-1/2 singularity 
given by equation (47). Note also that as Re is increased C D approaches its steady asymptotic 
value faster. Using relationship (43) one can derive the corresponding curves for case (b). Evi- 
dently, at the departure from rest the drag grows like t 1/2, while it increases linearly with time 
long after motion has commenced. The inversion of ff (e, t) for case (a) can be easily arrived at 
by performing some algebraic manipulations on the recorded solution of Carslaw and Jaeger [9]. 
It may be written as 

~(e,t) (r, O, t) = 

4 J,(r~)Yo(~)-Y,(r~)Jo(~)-2/(~r~) d~2} 
( r -  l / r ) + -  4 ~ ( e - ~ t - 1 )  sin0. 

Jo + Yo (0 
(so) 

Clearly t~ (e, t) vanishes for r = 1 and has the following useful approximation for small time 

~e ,  O(r ' O, t) 

( , _ 1 , , ) , _  - - = -  s,nO. 

If presented graphically, it demonstrates the 'birth' of a pair of vortices on the cylinder when 
motion commences and the propagation of this pair outward and downstream as time progresses. 
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The graphical presentation is not given herewith in order tO save space. The inner solution ob- 
tained in [1] is of a similar nature except that there a 'ring' vortex is born when motion com- 
mences. 

The inversion of qq (t, o) requires special attention. Rather than explain it in the body of the 
text, this is done in Appendix B. The resulting outer disturbance ~bl (t,o) for case (a) is shown in 
Figures 2 - 5  for T = 0.1, 1, 10 and 100. These show that as the cylinder starts moving, the pair 
of vortices mentioned reappear in the outer field close to the ends of the diameter perpendicular 
to the stream direction. These migrate away from the obstacle and downstream. So as to get the 
entire flow pattern in dimensional co-ordinates, one must set ~ '  = Va [YRe -1 + A R e  -1 xll I (t,o)], 

t = TvV -2 , (x', y ' )  = (X, Y ) v V  -~ . Thus in terms of the scale used in these figures the radius 
of the cylinder is Re. This basic feature was also obtained in the case of a sphere, except that the 
vortex core is in the form of a ring. For case (b) the inversion and plotting was not carried out. 

Appendix A 

Here we consider the solution of equation (21) for ~I ' ( t '°) ,  where P(S) is ~/S. The Lh.s. of that 
equation is denoted by (2/S) G(X, Y, S), where 

G(X, Y, S) = ~ y  [exp 0(/2) Ko (~" ~ + y2 /2)1. (A.1) 

Since it follows from equation (19) that G(X, Y, S) satisfies the homogeneous equation (25), a 
particular solution of the nonhomogeneous equation (21) may be expressed in terms of a series 
of repeated integrals as follows: 

2 "X 
~1 (/'0) (X, Y , S ) = .  '~ jo  G(X, ,  Y , S ) d X ,  + 

Indeed, by operating on this relationship with V 2 one retrieves equation (21). Defining the X- 
wise Laplace transform of ~1 (t,o) (X, Y, S) thus 

U~*(t,o) (~., Y , S ) =  £** e - x X  U~ (l,o) (X, Y , S )  dX, (A.3) 

and assuming that S is greater than k, we get from (A.2): 

2 1 
S S + X ,G*(X, Y, S). (A.4) 

The inversion of  (A.4) is achieved by employing the convolution theorem and the result is 
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The timewise development of the disturbance flow away from the cylinder at T = 0.1. 
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Figure 3. The timewise development of the disturbance flow away from the cylinder at T = 1.0. 
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The timewise development of  the disturbance flow away from the cylinder at T = 10. 
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Figure 5. The timewise development of  the disturbance flow away from the cylinder at T = 100. 
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2 
C~l(t'°) (X, Y,X)= - ~ £~0 e -s~ G(X-~, Y, S) d~. (A.5) 

This particular solution of equation (21) is singular at the origin and is discontinuous across the 
X-axis. Hence, in order to make the solution of that equation well behaved throughout, we ex- 
press it as follows: 

~Iq (l'°) (X, Y,S)= ~Iq (t'°) (X, Y,S)+ ~'1 (t'°) (X, Y,S), (A.6) 

where ~'1 (t,o) is a solution of the homogeneous equation (21). Clearly q*l (l,o) satisfies 

xPl (I'°) (X, Y, S) ~ O, as X2 + Y2 --> oo; (A.7) 

q,1 ¢1,°) (x, o,  s )  = 0. (A.8) 

Taking the limit of (A.5) as Y ~ 0 one gets 

2 27r e_SX (A.9) ~,(1,o)(y,o,s)=~ 1L% re.__, eS(X_x)+x/21nx/~ + y2 d?~: T ' 

( - + 0  

Since ~-tl(l'°) (X, Y, S) is a harmonic function we choose to represent it by a distribution of 
doublets of strength/~(X, s) on the positive X-axis. Hence it is given by 

ye (i,o) ( x ,  Y , S ) _  - a fo • la(~,S)ln~/(X_~)2 + y2 d~', (A.10) 
~Y 

and the Gauss flux theorem implies that the following holds 

~1 (l'°) (X, O, S) = - ffb[(X, S). (a.11) 

In view of (A.9) we select the following doublet distribution/a(X, S) = (2/S) e -sx and thus 
equation (24) is obtained. 

Appendix B 

In order to find the inverse of the solution of (24) we make use of the following well-known re- 
lationships: 

L - ' ( C ) = H ( T - X ) ,  (B.1) 

L - '  (Ko(~'ff/2))= 1 exp [ -  1 2T -~ (T + R2/T)]. (B.2) 
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When used together these render the convolution form 

( e  -s~ ) 1 r -~  1 
L -' \ - - ' ~  Ko(~'/~/2) = "~ £ exp [ -  -~ R(I"IR + R/r)] r -~ dr 

1 
f t  exp ( -  1 j~ cosh ~b) de, (B.3) --5 5 

where 

-- log [ (T-  ~)/R], ¢ = log (r/R). (B.4) 

The inverse of (24) may be written as 

~1 (t'°) (X, Y, T)= 

Oy £ ~  f ~  e x p 0  E l ' ~ - 2 l  Rc°sh~b]dq~d~+2tan- '  ( - - ~ ) - 2 t a n - ' ( - ~ - - ~ ) "  (B.5) 

It can also be shown that (B.5) vanishes on the X-axis. For large time this equation reduces to 

ffl (l'°) (X, Y, ~ ) =  - 2 -~-  fo = exp (,Y/2)Ko(.~/2) d~ - 2 tan -1 "-y',t -rr (B.6) 

which, because of relationship (A.9), again vanishes on the X-axis. The velocity field of the 
steady Oseen flow past a cylinder, as given in Van Dyke's [11] text, may be obtained directly 
from (B.6) by differentiation. 

Appendix C 

Here we are concerned with the solution of the integral equation 

for the unknown function F(/3). Letting q = 21/3S and P = 2- 1/a/3 equation (C.1) may be re- 
written as 

f_5~ F(P)Ai  (P-q)  dP= 6/q:, (C.2) 

so that its left-hand side is in the form of the convolution integral. The convolution theorem 
then readily yields 
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L -1 (F(X)) L -1 (Ai (-X)) = -3  I X I, (C.3) 

where L-1 denotes the inverse complex Fourier transform. To find the inverse transform of the 
Airy integral, we employ the integral representation of the Airy function (Jeffreys and Jeffreys 
[5] ) yielding 

L -1 (Ai(-X)) = (270- 1/2 fS~o Ai(-r/) exp (iXrl) dr/= 

__ (2.)-3/2 f f .  fo c°s(l°3-r/o)exp(iXr/)d°dr/' (C.4) 

which can be also expressed as 

1 03 _ ir/o +/r/X) dodr/. (C.5) L -1 (Ai(-X))= (2zr) -3/2 f 2  fS~  exp (i -~ 

Recalling the integral representation of the Dirac delta function 

(2~r)-1 f - 2  exp (iTr/) dr/= 6('y), (C.6) 

equation (C.5) renders a closed form solution: 

1 L-1 (Ai(-X)) = (2 , ) -1/2  exp (i ~ X 3) (C.7) 

Thus, the function F(P) by equation (C.3) is given by 

1 X3 + iXP) dX (C,8) F ( P ) = - 3  fS~  I X l e x p ( i ~  

o r  

2 ~3 
F(j3) = - 3 -  22/3 fS . .  I ~ I exp (i -~ + i ~ )  d~ (C.9) 

To verify that indeed (C.9) is a solution of (C. 1) we substitute the latter in the former yielding 

6 2 ~3 2 r/3 
- 27 f S~  ff. ff. I le"P(i3 + i ~ + i  3 +ir/(/3-2S))d~dr/d/3 

2 ~3 2 r/3-2ir/S)6(~+r/)d~dr/ (C.lO) = - 6  fS** fS~. l~ lexp( i -~  +i -~  

= - 6 fS.~ I r/I exp ( -2i r /S)  dr/= 3/S 2 

as we wished to show. Again, the last integral in (C.10) is also interpreted in Lighthill's [6] 
generalized-function sense. 
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